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1. Introduction

In studies of the earth’s anomalous gravity field, empirical covariance
functions are of great interest. The behavior of the gravity field is reflected
in these functions. The magnitude of the variations and the roughness of the
field is described. This kind of information is important and has to be taken
into account when gravity field related quantities are estimated from a et of
observationa. The method of least squares collocation (Moritz, 1980), is widely
used for this purpose. The method needs a covariance function to express
the relations between the observations and between the estimated quantities
and the observations. The best least squares agreements with the true
potential is obtained when the empirical covariance function is used.

Global empirical covariance values were estimated from gravity
observations by Tscherning and Rapp (1974). They derived some covariance
function models, and an expression for the global empirical covariance function
was found.

When studies of the gravity field takes place in local areas, the use of
high degree spherical harmonic approximations is very important. Estimations
of gravity field related quantities are carried out relative to the spherical
harmonic approximations using the residual observations and the local
empirical covariance function. This procedure corresponds to the stepwise
collocation (Moritz, 1980), where the solution of the first step is known.

The determination of a local empirical covariance function was discussed
by Goad et al. (1984). They arrived at the following definition of a local
covariance function: "A local covariance function is a special case of a global
covariance function where the information content of wavelengths longer than
the extent of the local area has been removed, and the information outside,

but nearby, the area is assumed to vary in a manner similar to the




information within the area”. They suggest that the Tscherning/Rapp models
are used in order to adjust an expression to empirical values in a similar way
as in the global case. This was done by Knudsen (1987) using an iterative
least square inversion procedure. The empirical covariance values were
determined from altimeter and gravity data relative to a spherical harmonic
approximation of degree and order 180.

A differenlL approach is to use the known part of the anomalous density
distribution in the earth. The effect from the topography is a considerable
part of the gravity field and, as far as the topography is known, this effect
can be used when the gravity field is modelled.' Results obtained by Forsberg
(1984) show that the topographic effect is a large part of the short
wavelength part of the gravity field. Furthermore, the results show that the
gravity field becomes much more homogeneous when terrain reduced quantities
from different local areas are evalueated. In these studies, a density contrast
of 2670 kg/m? was assumed, but actual density contrasts could also be taken
into account. This was done by Siinkel et al. (1987) when they computed
terrain effects using both a digital terrain model and a digital density model.

Covariance functions are needed in estimation methods like least square
collocation and they have to be consistent with the observations that are
used. Unfortunately, the estimations of such functions is hampered by the
lack of data in the areas where the gravity field modelling is to take place.
Consequently, a covariance function model has to be chosen. It is, therefore,
important to understand the variability of the local empirical covariance
functions. The results mentioned above indicate that this variability decreases
remarkably when the terrain effect is taken into acount. The residual gravity
field becomes more homogeneous and the choice of a covariance function model

becomes eaasier.




In this report, techniques for the estimation of empirical covariance
functions are described., In order to show the importance of terrain
reductions, previous results are summarized. Problems with centcring
observations are treated and a method for thc determination of a covariance
function model is described. New studies of the variability of the local
empirical covariance functions are carried out in ocean areas using altimeter
data along with bathymetry data. Terrain effects are calculated from the
bathymetry and the role of an isostatic compensation of the ocean bottom

topography is evaluated.

2. The Local Empirical Covariance Function

In this chapter the estimation and modelling of a local empirical covariance
function are evaluated. The importance of a complete removal of wavelengths
longer than the extent of the local area is pointed out, and a method for
doing this consistently using different kinds of observations is given.
Problems in using space domain or frequency domain methods for the
estimation of a covariance function are treated, and the effect of noise
associated with the observations is evaluated. Finally, an iterative least
square inversion procedure for adjusting a covariance function model to fit

empirical covariance values is described.

2.1 The local covariance function

In the following AT is the anomalous potential T where the information
content of wavelengths longer than the extent of a local area (é,,%,,A, ),
Tra¢y 18 subtracted. L and L° are two linear functional associated with Lhe
observations y=L(AT) and y’ =L (AT) located at (¢,A) and (¢ ,A"). If the

averages of y and y° over the area are zero, then the local autocovariance of




y (if L = L") or the local crosscovariance between y and y  is given by

1 .a AZ 1 an
cw =3 | | 5] vdacos(e) deer (2.1)
1 A2 o
where
cos ¥ = siné siné’ + cosé cosé’ cos(A-A") (2.2)

A is the size of the area on a unit sphere,
o 1is the aximuth.

This rotational invariant representiation of the covariance function is
calculated as an average of the products yy’ over the area (the two outer
integrations) and an average over the azimuth (the inner inilegration).
{Corresponding to homogeneity and isotropy respectively in a plane.) The
integration over the local area is restricted to the observations y. When ¢
goes from zero to m the observations of y° are used located over the whole
sphere. (See also Tscherning, 1985, and Sanso, 1986).

In practice the observations are given in discrete points in the area and
the calculation of the covariance function is then done by numerical
integration (Tscherning and Rapp, 1974). If each obaservation y, represents a

small area A; and yi represents an area A, then

— A A 1 Ly
Cy = I—I-‘Tﬁ';:u (2.3)
with
Yu—1 < Vij € Wi (2.4)

If the area is subdivided into small cells holding one observation each and

Ay and A, are assumed to be equal then equation (2.3) reduces to

c, = LYYy (2.5)

Ny
where N, is the number of products, y,yj, in the k’th interval.
Suppose T is expanded into spherical harmonics, and a global gravity

potential approximation up to degree and order N, Ty, is subtracted in order




to obtain AT. Then the covariance function, K(y), associated with (T-Ty) is
expressed by a sum of a series of Legendre polynomials of order i, P;,

(Tscherning and Rapp, 1974, and Tscherning, 1986)

N 3 i+ [ i+
KW = EeiID(E) Picos )+ F oyt DEDT Py(cos ¥
(2.6)

where

£;(T,T) are the potential error degree-variances,
¢;(T,T) are the potential degree—-variances,

r,r’ are the radial distances of y and y°,
R is the mean earth radius, and
Rg is the radius of a Bjerhammar sphere (R§ < rr’).

The integer N, relative to the size of the local area, is supposed to fulfill the
condition that 2#/N is smaller than the extention of the area where the local
covariance function is determined. (T-Ty) is equal to aT if an exact agreement
between T,y and Ty exists. Consequently, the error degree-variances are
zero. The degree-variances are positive numbers and are related to the
spherical power spectrum of the earth gravity field. It is well known that the
degree~variances tend to zero somewhat faster than i™* and that the
Tscherning/Rapp (1974) model 4 is a reasonable choice for a degree-variance

model,

o (T,T) = A/((i-1)(i-2)(i+24)) (2.7)
where A is a constant in units of (m/s)*. For geoid heights, {, and gravity
anomalies, Ag, we then have the degree variances associated with the

respective auto- and cross-covariance functions (y is the normal gravity)

o (&,¢8) = 1/(yy )eoy(T,T) (2.8)
a,(4g,Ag) = (i-1)*/(rr")e(T,T) (2.9)
oi(¢(,88) = (i-l)/('Yr')’l(T’T) (2.10)

See Tscherning (1976) for degree-~variances associated with other gravity field

related quantities,




In a flat earth approximation the sphere is replaced by a plane and (¢,A,y)
is replaced by (x,y,s) where 82zx3+y?. The power spectral density, or, more
loosely, the power spectrum of AT, ¢(u,v), is then evaluated using a
2-dimensional Fourier transform. Let y (and y’) be the Fourier transform of

y (and y°), then

y(u,v) = I I y(x,y)e ! (ux+vy) dxdy (2.11)

and ¢, ‘(u,v) the power spectrum associated with y and y’
* (u,v) = y(u,v) ¥y (u,v)* (2.12)

where ;'(u,v)l is the complex conjugate of ;(u.v).

The power spectrum of AT is then obtained from ¢ ,°(u,v) in a similar
way, as in the spherical case, by applying the inverse linear functionals
reiated to y and y° on the spectrum. Then the 2-dimensional covariance

function, K(x,y), is obtained using the inverse Fourier transform.

K(x,y) = zi; ] I ¢(u,v)e! (uxtvy)dudv (2.13)

and the isotropic covariance function, K(s), by averaging over the azimuth
an

K(s) = 3 l K(x,y)do (2.14)
Using this procedure the integrations in eq. (2.1) are calculated as a
convolution firast and then an average over the azimuth.

If the power spectrum, ¢(u,v), is isotropic (or had become isotropic by
averaging over the azimuth in the frequency domain) the isotropic covariance
function K(s), is obtained from eq. (2.13) where the Fourier transform is

reduced to an inverse Hankel transform. Consequently the isotropic power

spectrum is obtained from the isotropic covariance function using a Hankel




transform (and not a l-dimensional Fourier transform). That is

s10) - | K(s)g(se)s ds (2.15)
s
and
K(s) = | #(e)Jg(e8)0 do (2. 16)
[+ ]

where «? = u?+v? and J, is the Bessel function of order zero.

For details cf. Nash and Jordan (1978), Forsberg (1984a) and Schwarz
{1985).

These formulas (2.11-2.16) are given in an infinite plane and the spectrum,
given in eq. (2.12), is continuous, but it becomes discrete in the local case if
periodicity is assumed. Then the integration in eq. (2.11) becomes finite and
the integration in eq. (2.13) and (2.16) reduces to a summation. The discrete
values of the spectrum appear for wavelengths (x,-x,)/j and (y;-y,)/k in
each direction, when j and k are positive integers. On a sphere this
corresponds to harmonic degree 2n%j/(x,-x,) and 2n*k/(y.-y,) respectively.
With a discrete data distribution the Discrete Fourier transform is used. When
data are arranged in a regular grid, the integrations in eq. (2.11) are
calculated as sums and the power spectrum becomes periodic. The highest
frequency which may be estimated depends on the spacing of the data, Ax and
Ay, since the smallest wavelength is equal to two times the spacing, which on
a sphere corresponds to harmonic degree n/Ax and »/Ay.

For detaila on the application of the Fourier transform cf. Bracewell
(1983), and Mesko (1984).

Eq. (2.6) and eq. (2.16) express the covariance function in a spherical and
a plane approximation respectively. In a local area these approximations
converge to each other and there existe a link between the degree variances

and the power spectrum (Forsberg, 1984a)




o, (Rg/R)31*%2 = (i+1/2)1/(2nR)#((i+1/2)/R) (2.17)
where R is the distance from the center of the earth to the plane. The left
hand side expresses the degree variances in eq. (2.6) on a sphere with radius
R.

Normalized potential degree variances are obtained as dimensionless
quantities through a division by (GM/R)2.

The local caovariance function can be determined in two ways. The first
method is to evaluate eq. (2.1) using eq. (2.3) or eq. (2.5). The other method
is to evaluate eq. (2.1) (given in planar coordinates) using the Discrete
Fourier transform and an azimuth-average. The advantage of the second
method is that the amount of computation is much smaller than in method one,
and that the power spectrum is obtained during the computations. The

disadvantage is that the data have to be arranged in a regular grid.

2.2 Estimation of a local empirical covariance function

Before a set of observations is used in studies of the gravity field, it is
important that non-gravimetric signals like orbit errors and sea surface
topography in altimeter data, are removed from the observations.
Furthermore, the observations must be associated with the same geodetic
reference system.

Then the longwavelength part of the gravity field has to be removed in
order to estimate the local empirical covariance function. If this is done using
a spherical harmonic approximation, residual observations, ¥4 =
Ly(T)-L,(Ty)+n,;, where n; is the noise associated with the i'th observation,
are obtained. Such quantities are normally used in studies of the gravity
field, but an estimation of a local covariance function will result in a

covariance function, cov(§,§'), thut ia affected by the noise of the




observations , and errors in the spherical harmonic approximation (Rapp,

1985). That is

cov(gr,;') = cov(y,y ) + coV(L(T,ros~TyN), L' (T g¢-Ty)) + cov(n,n’) (2.18)
where cov({y,y ') is the local empirical covariance function, C(v¥),
cov(L(T,e¢=Tn)y L' (Tre¢~Ty)) is the covariance function associated with errors
in the spherical harmonic approximation, and cov(n,n’) is the covariance
function associated with the noise of the observations. The remaining terms
are assumed to be zero. Therefore, the estimated covariance function is not
the local empirical covariance function, because cov(L(T_.,¢-Ty)) is associated
with wavelengths longer than the extent of the local area. Cov(L(T,o¢-Ty),
L' (T.e¢-Tn)) is indeed a part of the covariance function that should be used
in e.g. collocation, but it is not a part of the local covariance function and
can never be estimated from observations in the local area. Remaining long
wavelength parts of the gravity field will interfere with the result and
furthermore cause spectral leakage if periodicity if assumed. Consequently
remaining long wavelength parts of the gravity field have to be removed
completely from the observations. Cov(n,n’) is zero for ¥ > 0, if the noise is
assumed to be uncorrelated. For ¥=0 cov(n,n’) is equal to the variance of the
noise.

In a local area remaining long wavelength parts of thex gravity field may
appear as a bias., In Knudsen (1987) such a bias was removed in order to
center the observations by a transformation into locally best fitting reference
system. However, all wavelengths in the spherical harmonic approximation may
contain errors. Therefore it is not sufficient to remove a bias. The
procedure must be able to consistently remove all wavelengtha longer than the
extent of the local area from several kinds of gravity field related quantities.

A method that fulfills these requirements in least squares collocation using a




covariance function that is designed for the task. Then X; = L;(T,..¢-Ty) is

estimated from § = {L;(Trq¢-Ty)+n;} by

%, = Ccl (c+D) ' ¥ (2.19)

and

e? = Cxivmy ~ C-}i(C'*D)"'C;i (2.20)
where C -is a matrix contai@ing the covariance between the elements in ¢, D is
a matrix containing the associated error covariances. Cgz; is a vector holding
covariance values between the estimate and ¥ and Cg,,z; is the variance of
the quantities X, e i8 the error of X;.

In a spherical harmonic expansion the remaining long wavelength part of
the gravity field is expressed by a series up to degree and order N. The
covariance function between quantities related to this part of the gravity field
is expressed by eq. (2.6) but truncaled at degree N. If a spherical harmonic
approximation up to degree and order M has been subtracted, where M is less
than N, the degree variances from the global empirical covariance function
(see Tscherning and Rapp (1974)) are used from degree M+l to N. The
quantities L;(T.o¢-Ty) are estimated from the observations, ¥i» by a
convolution with a filter that truncates the spectrum at harmonic degree N.
This has to be done in the space domain, because the long wavelengths are
not resolved in the frequency domain. As discussed in Jekeli (1981), a
rectangular filter is not a good choice, since the spectrum of this fiiler has
relatively large sidelobes. However, no expression for the ideal filter is given.
In the plane the ideal isotropic filler is expressed by a first order
Bessel function. A reasonuble alternative to the rectangular filter is a rec-
tangular sinc filter: w(x,y)=sinc(£ N) sinc(f N), where sinc(a)=sin(na)/{(na).

Values associated with several kinds of gravity field related quantities

may be used in the computations simultaneously. This means that quantities,
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®,, associated with different kinds of gravity field related quantities are
estimated consistently. It is also possible to compute (:orr;etttiorts to the
spherical harmonic expansion (Tscherning, 1974).

The Fortran program GEOCOI. (Tscherning, 1985) can be used for the
estimation of the long wavelength part of the gravity field, but a few changes
are needed. The subroutine COVAX shall be called with LSUM = .TRUFE., N2 is
equal to the degree N, and HMAX = -1.0 (see input 7 in the program).
Furthermore the constant A (in eq.(2.7)) shall enter CCI(8) directly without
being calculated from the variance of gravity anomalies. In the subroutine
the array SM must have a dimension of at least N.

The local empirical covariance function may then be estimated, when the
remaing long wavelength parts of the gravity field are removed. In principle
this covariance function is expressed by an infinile sum of a series of
Legendre polynomials, but in practice it is estimated from discrete
observations using numerical integration. A reasonable result can only be
obtained if the spectrum tends to zero and the spacing between the
observations is so small that aliasing effects caused by the higher frequencies
are negligible. Since the gravity field is unknown, it 1is impossible Lo
determine how dense the observations are needed. Therefore the spacing
between the observations has to be determined from experiences from other
investigations.

A global empirical covariance function was estimated by Tscherning and
Rapp (1974). Then, the degree-variances were modelled using eq. (2.7), and
the factor A and the radius of the Bjerhummar sphere were adjusted in order
to fit the covariance function to the empirical covariance function. The
procedure resulted in a depth to the Bjerhammar sphere, R-Rg, of 1.22 km.

Results from later investigations indicate that this depth should be larger.

11




For the Canadian covariance function a depth of 3.35 km was found by
Schwarz and Lachapelle (1980). In the Faeroe Islands region a depth of 3.17
km was found by Knudsen (1987). In Germany, however, a depth of 1.00 km
was found by Denker and Wenzel (1987).

Other studies have been carried out, where the decay of the potential
degree variances has been estimated from the power spectrum. Such studies
indicate (see e.g. Rapp, 1985, and Forsberg, 1987) that values around -3.6 are
typical, but values ranging from -3.3 to -4.8 were found in local studies of
the gravity field in the nordic countries.

In order to compare the results obtained by adjusting Ry and the decay
of the potential degree-variance, the decay of the degree variance model
multiplied by (Rg/R)2*? was computed. Since (Rg/R)?i*? tends faster to zero
than a polynomium, the decay was computed in interval as the difference
between the logarithms of the degreee variances multiplied by (Rg/R)?i*2? at
harmonic degree 180 and 1800. With a depth to the Bjerhammar sphere of 1.0,
2.0, 3.0 and 4.0 km. a decay of -3.2, -3.4, -3.6, and -3.8 was found.
Therefore, a depth to the Bjerhammar sphere of 3.0 km agrees quite well with
values of the decay around -3.6. However, depths around 1.5 km
(corresponding to decays around -3.3) may occur as well as larger depths to
the Bjerhammar sphere. .

The covariance function models described above may then be used to
evaluate how dense the observations need to be distributed in order to
estimate the local empirical covariance function. Degree-variances associated
with different kinds of obsevations may be calculated and information about
how fast they tend to zero is obtained. Also covariance values, Cy, may be
computed from different harmonic degrees to infinity (Tscherning, 1976) and

information about the magnitude of the high frequency part of the gravity
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field is obtained. Such values have been computed for geoid heights and
gravity anomalies with a depth to the Bjerhammar sphere of 1.5 km and 3.0
km. In this case the gravity field above harmonic degree 180 is assumed to
be studied, so the values are given relative to the values at degree 180 in dB
(10log o(on/0180) and 10log,o{Cn/C.a0)) for degree 360, 720, 1440, and 2880

(see Table 1).

_ g/d a0 Cn/Cirag
(R-Rg) | N .0 Grd) | (6.0 (Ag.8g)
1.5 360 - 9,17 - 3.13 - 6.45 - 1.54
720 -18.82 - 6.74 -13.59 - 3.70
1440 -29.26 -11.16 -21.73 - 6.88
2880 -41.21 -17.08 ~31.72 -11.83
3.0 360 - 9.54 - 3.50 - 7.03 - 2.08
720 -19.92 - 7.85 -15.13 - 5.27
1440 -31.84 -13.74 -25.09 -10.65
2880 -46.73 -22.60 ~38.43 -18.36

Table 1. Values of degree-variances, ¢y, and variances, Cy, in dB
relative to values at degree 180. Values associated with
geoid heights, ({,{), and gravity anomalies, (Ag,Ag), are
calculated using the Tscherning/Rapp model 4 and a depth to
the Bjerghammar sphere, R-Ryg, of 1.5 km and 3.0 km. The
variances are calculated as the sum of the respective degree -
variances from harmonic degree N to infinity.

First of all, the results illustrate that the degree-variances associated
with geoid heights, tend much faster to zero than the degree-variances
associated with gravity anomalies. Furthermore, the degree-variances
associated with a depth to the Bjerhammar sphere of 3.0 km tend to go faster
to zero than the degree-variances associated with a depth of 1.5 km. The
part of the variance that is located above the different harmonic degrees tend
to zero in a manner similar to the degree-variances, but not so fast. This
shows that if a harmonic degree is determined so the degree~variances have
decreased to a certain level, then the variance above this harmonic degree has

not decreased to this level. Therefore the spacing that is necessary to

resolve the spectrum of the gravity field with negligible aliasing effects
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should be determined considering the variance values. If the level is chosen
to be between -15 dB and -20 dB the variance of that part of the spectrum
that causes the aliasing has decreased to 1%-3%. Then, values associated with
a depth to the Bjerhammar sphere of 3.0 km for a harmonic degree of 720 is
found for geoid heights and 2880 is found for gravity anomalies. This means
that geoid heights and gravity anomalies are needed with a spacing of 1/4°
and 1/16° respectively, in order to resolve the two kinds of gravity fields. If
a depth of the Bjerhummar sphere is assumed to be 1.5 l-m; a more dense
distribution is needed for both kinds of observations.

In order to compute covariance values using eq. (2.5), the local area is
subdivided into samall cells and one observation in each cell is selected in
order to obtain a more homogenously distributed data set with a spacing close
to the one that is required. Also, data outside the area should be used.
Periodicity may be assumed, but then problems due to wavelengths that are
not periodic may arise. As discussed in Knudsen (1987), estimated values
should not be filled in empty cells.

I[f the covariance function is computed using the discrete Fourier
transform and an azimuth average, the observations have to be gridded. This
can be done using least square collocation. However, faster methods like
weighted means and collocation using only the closed observations may be
used. The gridding procedure may have a considerable smoothing effect
{Knudsen, 1987), which can be diminished by using a much more densely
distributed set of observations than the resulting grid.

Before the Fourier transform is calculated, it is advisable to apply a
cosine tapered window in order to avoid spectral leakage caused by
wavelengths that are not periodic in the local area.

A cosine taper being effective on K points from each border is
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A cosine taper being effective on K points from each border is

- % cos(n ‘-(-;—1) for k=1,...,K
Wi = WN+i-k = (2.21)

for k=(k+l1),...,N/2

nN |-

[

where N is the number of points in each direction.
The loss of power may be re-established through a multiplication factor,
so agreement with the variances before and after the cosine tapering is

obtained. That is
Yy = c ¥y Wy wy (2.22)

where ¢ is the multiplication factor
c? = ?Jyfj / ?J(y,, wy wy)? (2.23)

where v{ ; are the so-called windowed observations.

Figure 1 and 2 show the effects of using a cosine taper. In both figures,
the power spectra (in dB) of a one-dimensional discrete Fourier transform of a
sequence of 64 points are shown, when cosine tapers with K=0 (do nothing),
K=8, K=16, or K=32 are used. Figure 1 shows the results w‘here a cosine with
the frequency f,=16 was used as sequence. Then the Fourier transforms of
the tapers centered at f=16 are obtained, since the multiplication in the space
domain corresponds to a convolution in the frequency domain, These
frequency domain impulse responses show how the impulses are smoothened
out, when K increases. The shoulders, however, appearing with values smaller
than -20 dB, become more narrow. With K=32, a cosine taper gimilar to the
Hanning taper is obtained, which in the frequency domain has the values 1/4,

1/2, 1/4 at the frequencies -1,0,1 (see eg. Mesko, 1984).
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Figure 1. Effect of cosine taper with K=0 (A), K=8 (B), K=16 (C),
and K=32 (D) on the discrete power spectrum of a cosine function
having a frequency of 16.0 sampled in 64 points.

Figure 2 shows how spectral leakage occurs and decreases when a cosine
taper is applies. A function that consists of 10 cosines with the frequencies:
fe = 15.64...,16.5 having the same amplitude (0.1) was used as sequence. The
puwer of this sequence is expected to be located at fz16 with some influence
on the neighboring frequencies. If no cosine taper is applied, it is seen
(figure 2A) how those frequencies are resolved in the discrete spectrum. Most
of the power (93.0%) is located at f=15, 16, and 17, but the remaining power
(7.0%) appears at all frequencies as a result of the leakage effects. When tho
cosine tapers are applied the leakage effects decrease and the parts of the
power that are located as f=15, 16, and 17 increase Lo 93.8%, 396.0%, and 99.4%.

This means that the cosine taper with K=32 (=N/2) resuits in a spectrum with

a minimum frequency dispersion.
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Figure 2. Effect of cosine taper with K=0 (A), K=8 (B), K=16 (C},
and K=32 (D) on the discrete power spectrum of a sum of 10 cosine
functions having frequencies of 15.6-16.5 sampled in 64 points.

The estimated covariance function containg both the local empirical
covariance function and a covariance function associated with the noise. In
the power spectrum, uncorrelated noise will appear as a constant level (white
noise) and dominate the higher frequencies, where the power of the gravity
field is small. The noise in itself i3 unknown, but the variance of the noise
may be estimated if reliable noise terms are associated with the observations.
Another poassibility is to estimate the noise level in the power spectrum. Then
the estimated variance of the noise is subtracted from the estimated
covariance function and the local empirical covariance functions associated

with the earth’s gravity field is obtained.
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2.3 The adjustment of a covariance function model

The adjustment of a covariance function model is an important step when
the local empirircal covariance function is used in estimations of gravity field
related quantities. In Knudsen (1987) the Tacherning/Rapp model was fitted to
the empirical covariance values by adjusting the depth to the Bjerhammar
sphere, (R-Ry), the factor A, and a scale factor, a, associated with the error
degree variances using an iterative least squares inversion procedure. In
each iteration, the adjustment of the parameters x, were calculated as

X = Xo = (ATCG'A + C})7™F ATC,™'  (y-y,) (2.24)

where

b is the adjusted parameter
y is the empirical covariance values
Yo 1is the values from the model using x,

A is the Jacobian matrix {dy/dx;}
Cu is the error covariance matrix of y
Cx 1is the covariance matrix of (x-x,)

The ablility of the model to describe the empirical values, or the fitness, was

measured by the dimensionless Q value, where
_ 1 -
Q* = aomy (Y Ye)' €yt (y-ve) (2.25)

where n is the number of data and m is the number of parameters (=3).

In practice the adjustments were calculated relatively as dimensionless
quantities by multiplying each column in matrix A by the associated parameter.
Consequently, both the rows and columns in matrix C, were divided by the
associated parameters obtaining relative apriori variances.

The error covariance matrix, C j» was assumed to be diagonal and contained
the square of some empirical error estimates. These errors were calculated in
order to evaluate the accuracy of numerical integration in eq. (2.5) and

depends on the variances, C, and C; of the observations y and y’, the size

of the local area, the size of the cells, 4¢ and A\, and the actual number of
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products that would appear if one observation is located in each and every

cell. The error, err,, associated with the k’th covariance value is then

err, = —= (2.26)

Ny
nO

where

c= Y C,C,

. §¢A;;0,) (}\A;;J\, ) for k=0

n=

ng2n -m‘%i-“:*) Slﬁ{;*) for k > 0

The method was tested in the Faeroe Islands region using three
combinations of empirical covariance values as input. The results showed that
the scale factor, a, was not well determined from gravity anomaly covariance
values, and the depth to the Bjerhammar sphere was not well determined from
geoid height covariance values only. A combination of these two kinds of
covariance values resulted in a well determined model: (R-Rg)=3.17 %0.34 km,
A=889 147 10°m*/s*, and a=0.21 20.04. Changes in the initial model were not
found to have influence on the results.

If agreement between the extent of the area and the degree, which the
gravity field have been removed up to, exists, the scale factor should be zero.
This was not the case in the Faeroe Islands region. The scale factor was not
zero because the remaining longwavelength parts were not completely removed
by the centering that was used. Furthermore, the area was larger than the
wavelengths that were removed. Suppose that a spherical harmonic expansion
up to degree M had been subtracted from the observations, and that
remaining long wavelength parts have been removed up to degree N (N<M)
using the procedure described in section 2.2. N corresponds to the size of
area. Then the degree variances up to degree N are zero. The degree
variances between degree N and M are a part of the local covariance function

and they may be modelled by the error degree variances that are associated
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and they may be modelled by the error degree variances that are associated
with the spherical harmonic expansion, multiplied by a scale factor.

The use of a local covariance function model from degree N+1 and a global
covariance function model up to degree N, when quantities like § is used, is
discussed in section 2.2. The local covariance function is also of interest in
estimation methods like point mass modelling. Forsberg (1984a) describes the
relations between least squares collocation and point mass modelling and how
the depth to the point masses'affects the shape of the covariance function. A
covariance function with an asymptotic decay of the potential degree variances
of -3 on the surface of a Bjerhammar sphere (like the Tscherning/Rapp model)
is implicitly obtained when a certain distribution of point masses is located at

a depth, which is two times the depth to the Bjerhammar sphere.

3. The Use of Satellite Altimeter Data for Estimation of Local Empirical
Covariance Functions

In this chapter three local empirical covariance functions are estimated
from locally crossover adjusted Seasat/Geos-3 altimeter data. The purpose of
a local crossover adjustment is described in a brief discussion on the use of
satellite altimetry and the resuits from the adjustments of the altimeter data
are evaluated. Covariance functions associated with the gravity field above
harmonic degree 180 are estimated and the spherical harmonic expansion OSU81
(Rapp, 1981) are used as reference. The effects of remaining long wavelength
parts on the estimation of empirical covariance functions are studied by
comparing covariance functions estimated before and after those remaining
long wavelength parts of the gravity field were removed from the
observations.

In order to study the variability of Lhe gravity field the three local
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areas were selected with different characteristics. Area 1 (The New England
Seamount Area: 38°<$#<40°, 295°<A<297°) was selected as a ’'mild’' area, Area 2
(34°<$<36°, 294°<(A<296°*) wus selected as a ’'smooth' area, and Area 3 (The

Bermuda Area: 31°<9<33°, 294°<A<296°) was selected as a ’'rough’ area.

3.1 The Crossover Adjustment

From satellite altimeter data sea surface heights are derived using the
ellipsoidal heights of the satellite. These sea surface heights may have been
corrected for a number effects (instrumental and atmospherical effects and sea
state related bias). From such instantaneous sea surface heights mean sea
surface heights are obtained by subtracting variations in Lhe sea surface
heights due to tide and variations in the atmospheric pressure. After a
removal of the sea surface topography observations of geoid heights are
obtained. The accuracy of such observations depends on the quality of the
models that have been used in the corrections of the altimeter data.
Furthermore the observations contain unmodelled phenomena like effects from
rain, clouds, and changes in ocean currents. A geoid height observation
derived from an altimetric observation may therefore be deacribed by

h =¢ + Ahg + Ahy + n (3.1)

where ¢ is the geoid height and thq non-gravimetric signal is divided into a
constant part, Ah,, and a time varying part, Ah. n is the noise of the
observation.

From a set of observations, (h,}, located in a local area, a quantity x may
be estimated by least squares collocation

X = C"h (Chh + D)—‘ {h'} (3-2)

where C,, is a vector contlaining covariance values between x and the

observations and C,, i8 a matrix containing covariance values between the
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observations. D is the covariance matrix associated with the noise of the
observations. The covariance values associated with the observations depend
on the covariances between the ¢, the Ah., and the 4h, termsa in eq. (3.1), and
the quantity x may be associated with at least one of those terms. A
separation of the geoid and the constant part of the non-gravimetric signal
will only be successfull if the spectral characteristics of the two signals are
different, and a separation of the time varying components will only be
successfull if observations, where the constant parts of the signal (including
the geoid) are strongly correlated, are available. The first criterion may be
fulfilled if the constant part of the non-gravimetric signal consists of long
wavelengths and those wavelengths have been subtracted from the gravity
field related part of the signal. The second criterion may be fulfilled if
repeat observations are used.

The need of repeat observations, when quantities are estimated using eq.
(3.2) from observations containing time varying components, may result in
very large equation systems and problems in solving them. It is therefore
desirable to remove the time varying components from the observations so
repeal observations no longer are needed. The problem ise then to estimate
the time varying components, because the repeat observations still are needed
in this step. In this case a solution is obtained by using the differences
between the repeat observations. That is using eq. (3.2) and pairs of
observations, h; and h’,, where h; and h’;, are located at the same point on

either colinear arcs or crossing arcs

cl AT AT7" (Cpp*D)™* A" A (hy, h’,}
cl AT (A(Cpn+D)AT)™ {d,}
Cl AT (C’+D*)™! (d,} (3.3)

f(t)
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where f(t) is the estimate of Ah, in eq.(3.1). (d;}=A{hy, h’;} is a set of
differences d;=h,-h',. [If the time varying components are uncorrelated with
the constant terms (¢ and Ah.) C. coniains the covariance values cov(8h,(tL},
Ahg;) and cov(ah.(t), Ah’;;) and C’ contains the covariance values cov(&h,,,
8hey) + cov(ah’y, ah’y ) - cov(ahyy, 4h’;§) - cov(ah'y;, Ah¢j). D’ contains the
error variances of the differences d;. The error of the esiimated value is
expressed by

err?(t) = c ~ Cl AT (C’ +D’)"* AC, (3.4)

where c is the variance of the time varying components.
After the time varying components are estimated the altimeter data are
corrected and crossover adjusted observations are obtained. That is

h,

h - f(t)
¢ + Ah, + n, (3.5)

where n, is the noise of the crossover adjusted observation.

The method and how the covariance values may be computed are discussed
in Knudsen (1987a). Tests in The Faeroe Islands Region using the adjusted
Seasat altimeter data (Liang, 1983) showed that remaining time varying
components were successfully removed. It was assumed that orbit related
errors had been removed and that the main part of the remaining variations
was caused by an inaccurate ocean tide model and the unmodelled phenomena
mentioned above. The covariance values where calculated ua_ing A gaussian
function and the along track distance between the crossover points. As
correlation distance 1000 km was used.

The potential of this method is that altimeter data in local areas with
inaccurate ocean tide models (coastal areas like the Mediterranean) can be
adjusted more accurately than in conventional bias or bias/tilt adjustments.

On the other hand it is not felt that the method is suitable for orbit error
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estimations, since orbit errors are geographically correlated (see eg. Engelis,
1987). Further studies of time varying components and their correlations are
needed and can for example be based on the extensive repeat information made

available through the Geosat mission.

3.2 Results from the Crossover Adjustmenti of Seasat/Geos-3 altimeter data.

For the estimation of the local empirical covariance functions observations
from the merged Seasat/Geos-3 data set (Liang, 1983) were used. All
observations in each 2° x 2° area plus a 2* border zone were retrieved. It
resulted in three data sets each containing 35000 (approximately) observations.
Since the observations were distributed far more densely than needed, it was
decided to thin out the data. During this process a cell size of 1/6° by 1/6°
wasa chosen for the estimation of the empirical covariance functions (explained
in the next section). Then a subset of arcs were selected, so the observalions
associated with those arcs would provide at least one observations in each
cell. This was done in each area and resulted in data sets each containing
12000 observations approximately.

Crossover discrepancies were computed as the difference in height
between ascending and descending tracks. The heights and the position were
calculated by a linear interpolation between the four neighboring observations.
The crossover adjustments were carried out using the method described in
section 3.1. It was assumed that orbit errors had been removed and a
covariance function similar to the one used in the Faeroe [alands Region was
used. Since the number of crossover discrepancies was large, the estimation
of the time varying components was based on crossover discrepancies between
Seasat arcs, and crossover discrepancies between Seasat and Geos-3 arcs only.

RMS values of the discrepancies were computed before and after the
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adjustments. These values are shown in Table 2.

The results from the crossover adjustments (Table 2) show that
discrepancies between Seasat arcs generally are much smaller than
discrepancies between Geos-3 arcs. The reason for that is that the Seasat
altimeter data are much more accurate than the Geos-3 altimeter data. The
results show furthermore that the discrepancies after the adjustments are
largest in Areas 1 and smallest in Area 3. It was also expected, since Area 1
is located in the center of an area with large sea surface variations due to
changes in the Gulf Stream (Menard, 1983). Those variations may contain a

rather short wavelength signature, which is not completely modelled in the

adjustment.
Area Type Number RMS2 RMSP
1 S/S 134 0.41 m 0.15 m
S/G 1014 0.52 - 0.34 -
G/G 1737 0.60 - 0.58 -
2 S/S 106 0.25 m 0.13 m
S/G 964 0.48 - 0.31 -
G/G 2084 0.60 - 0.54 -
3 S/S 111 0.13 m 0.09 m
S/G 1064 0.37 - 0.27 -
G/G 2322 0.51 - 0.46 -

Table 2. Results of the crossover adjustments in Area 1, 2, and 3 extended
with a border zone of 2 degrees. The number and RMS values before (a) and
after (b) the adjustments of discrepancies between Seasat arcs (S/S), between
Seasat and Geos-3 arcs(S/G), and between Geos-3 arcs (G/G).

Crossover adjusted altimeter data were obtained using eq. (3.5) and their
noise terms were evaluated. The purpose of an evaluation of the noise terms
is to determine whether they are appropriate geoid observation noise terms or
not. As mentioned in section 3.1 the accuracy depends on the quality of the

terms associated with the data do not take this into account. From studies of

repeat tracks by Marks and Sailor (1986) typical geoid noise terms of 8 cm for
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Seasat and 28 cm for Geos-3 altimeter dala were found. These values are
approximately 40% higher than the typical errors of 6 cm and 20 cm that are
assigned Seasat and Geos-3 altimeter data respectively. In this case the noise
terms are evaluated using RMS values of the crossover discrepancies divided
by the errors of the discrepancies. If the numbers are larger than one, time
varying components are still present. Such remaining time varying
components are correlated along track, but across track they may be treated
as uncorrelated errors. If the correlations along track are small, the total
errors may be assumed to be uncorrelated. Consequently the noise terms can
be modified, so they agree with the magnitude of the crossover discrepancies.
This was done in each area by computing scale factor for the noise terms of
Seasat and Geos-3 respectively. Then the noise terms were multiplied by the
respective scale factors and noise terms associated with geoid height
observations were obtained. The scale factors and RMS values of the modified

noise terms are shown in Table 3.

Area Seasat Geos—-3
factor RMS factor RMS
1 1.58 0.1l m 2.03 0.41 m
2 L1.45 0.09 - 1.96 0.39 -
3 1.00 0.06 - 1.46 0.29 -

Table 3. Scale factors and RMS values of the modified noise terms for Seasat
and Geos—-3 in Area 1, 2, and 3.

3.3 The Estimation of the Local Empirical Covariance Functions.

It was decided to estimate local empirical covariance functions associated
with harmonic degrees greater than 180, which roughly corresponds to
wavelengths shorter than 2 degrees, and use the space domain method with

observations selected in cells covering the areas. The size of the local areas
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areas should be taken into account within distances of 2°. Then covariance
values are calculated using eq. (2.5) by forming averages of products between
observations in the local 2° by 2° areas and observations in the 6° by 6°
areas. It corresponds to a typical estimation situation, where quantities in a
local area are estimated from observations in the local area and a border zone.
The variances of the modified noise terms are also calculated and subtracted
from the variances of the observations.

The cell size was determined from the results in section 2.2 and from
results by Marks and Sailor (1986). The results from section 2.2 showed that
a cell size of 1/4° would be sufficient to resolve geoid heights., Marks and
Sailor, however, found that the short wavelength resolution limit is about 32
km for Seasat and about 60 km for Geos-3. These wavelengths corresponds
roughly to sample spacings of 1/7° and 1/4°* (half wavelength). Since a
combination of Seasat and Geos~3 dala are used, a cell size of 1/6° was
chosen. Then each area was subdivided into cells of 1/6° by 1/6° and one
observation in each cell were selected from the locally crossover adjusted
altimeter data.

The removal of the information content of wavelengths longer than the
extent of the local areas was in the first place done by subtracting the
contribution from the spherical harmonic expansion OSU81 up to degree and
order 180. Then empirical covariance functions were estimated. This was
done in order to study the effects of remaining long wavelength parts.

Then remaining long wavelength parts were estimated using the method
described in section 2,2, Mean values were computed using a rectangular sinc
filter on a 1/2° by 1/2° grid covering each 6° by 6° area. From Lhese mean
values remaining long wavelength parts in the observations were estimated by

least squares collocation (eq. (2.19)) and a covariance function truncated at
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lenst squares collocation (eq. (2.19)) and a covariance function truncated at
degree 180. The variances of the mean values were smaller than the error
variance of OSU81 (1.15 m?), so constant non-gravimetric effect were assumed
to be small and included in the estimated values, since those effects mainly
are due to sea surface topography of wavelengths corresponding to harmonic
degrees smaller than 180. After a removal of the estimated values from the
crossover adjusted altimeter data, observations of geoid heights associated
with harmonic degrees greater than 180 were obtained. Then local empirical
covariance functions were estimated from these space domain highpass filtered
observations.

The estimated geoid height variances in the three local areas were 0.256
m2, 0.372 m?, and 1.899 m? respectively, before the remaining long wavelength
parts (after the subtraction of the OSU81 field) were removed. {Noise
variances of .0.069 m2, 0.090 m2, and 0.033 m? respectively have been
subtiracted.) Using the highpass filtered observations these numbers reduced
to 0.213 m?, 0.112 m?, and 1.217 m3. The variances associated with the
remaining long wavelength parts are then 0.043 m?, 0.260 m2, and 0.682 m? or
20%, 232%, and 56X relative to the variances of the highpass filtered
observations. @ The effects of the remaining long wavelength parts on the
eatimation of the geoid height variances are therefore considerable. Especially
the results obtained in Area 2, where the magnitude of the remaining long
wavelengilh parts is more than twice as big as the magnitude of the highpass
filtered observations, show the importance of removing those long wavelength
partis.

The local empirical covariance functions estimated in Area 1, Area 2, and
Area 3 using the selected observations before and after the removal of the

remaining long wavelength parts are shown in Figure 3-5. Furthermore power
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spectra calculated from 1/6° by 1/6° mean values using a cosine taper (eq.
(2.21)) with K=6 are shown. The purpose of calculating power spectra was to
evaluate thc spectral content at the lower frequencies, so no attempis lo
correct for effects due to smoothing and noise were made. The local areas
were extended to 4° by 4° in order to estimate the 1/4 cycle/degree power
also. The effects from the remaining long wavelength parts are also seen by
comparing the two covariance functions in each area. Before the highpass
filtering the covariance functions in Area 1 and Area 2 have their first zero
crossing at lags of 1.75 deg. and more than 2.00 deg. respectively. After the
highpass filtering the first zero crossings occurs at lags close to 0.5 deg.
The power spectra show the different gpectral contents. Before the highpassy
filtering the observations contain large signals associated with frequencies 1/4
and 1/2 cycles/degree, which efficiently are removed from the highpass
filtered observations. The information contents of wavelengths longer than
the extents of the local areas have therefore been removed from the highpass
filtered observations. Consequently the covariance functions calculated from
those highpass filtered observations are estimates of the local empirical
covariance functions associated with the gravity field above harmonic degree

180.
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4., Local Empirical Covariance Functions from Residual Terrain Reduced

Altimeter Data.

The effect from the topography is a considerable part of the gravity field
and, as far as the topography is known, this effect can be used when the
gravity field is modelled. This may be done by computing gravity field
related quantities from the topography and subtract the terrain effects from
the observations. Then terrain reduced observations are used in the
estimations and the resuilts are obtained by adding the estimated quantities
and the terrain effects. If a spherical harmonic expansion is used as
reference, terrain effects associated with the same wavelengths as the
harmonic expansion are removed implicitly. Then residual terrain effects are
used. Methods for computing residual terrain effects from a digital terrain
model using rectangular prisms or Fourier techniques are desribed in e.g.
FPorsberg (1984) and Forsberg (1985).

The effect of using topographic information is that the magnitude of the
unknown parts of the gravity field becomes smaller. PFurthermore strongly
varying gravity fields in mountainous areas reduce to more smooth gravity
fields. These effects are described in Forsberg (1986), where results from a
study of the spectral properties of the gravily field in the Nordic countries
are evaluated. RMS values of gravity anomaly observations relative to GPM-2
(Wenzel, 1985) to degree and order 180 were calculated in 38 2°* x 4° blocks
before and after residual terrain effects were removed from the observations.
In Figure 6 the RMS values of the observations relative to GPM-2 (FA:
Residual Free-air Anomalies) are plotted against RMS values of the residual
terrain reduced observations relative to GPM-2 (BA: Residual Bouguer
corrected Anomalies). Furthermore the distribution of the two types of RMS

values are shown. The RMS values of the residual free-air anomalies range
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from 8 mgal to 59 mgal. Typical “ralues of 10-15 mgal were found in lowland
areas in Denmark and Finland, and typical values of 30-45 mgl.al were found in
mountainous areas in Norway. The RMS values of the residual Bouguer
corrected observations range from 7 mgal to 21 mgal. The mean value of the
RMS values dropped from 19.3 mgal to 12.3 mgal, and the standard deviation of
the RMS values dropped from 12.5 mgal to 3.3 mgal, when the residual terrain
effect were removed. Areas with smooth gravity fields and smooth topography
did not change much, but the rough areas became much smoother. The most
dramatic change was t:ound in a Norweigian Block, where the RMS value
dropped from 59 mgal to 14 mgal. The gravity field in the Nordic countries
has thereby become much more homogeneous, and the magnitude of unknown
parts of the gravity field did decrease.

In this chapter a method for computing residual terrain effects from an
isostatic earth model is deacribed. The method is used in the three local
areas described in the previous chapter and local empirical covariance
functions are estimated from residual terrain reduced altimeter data.
Furthermore correlations between the altimetric and bathymetric geoid

undulations are evaluated.

4.1 Calculation of Residual Geoid Undulations from an Isostatic Earth Model.

Since the earth is believed to be about 90% isostically compensated, it was
decided that the computation of geoid undulations from the topography should
take the isostasy into account. Therefore an isostatic earth model was needed.
A simple (and highly idealized) model is the Airy-Heiskanen model (Heiskanen
and Moritz, 1967). This model is based on a floating theory, where the
topography is compensated at a depth of 30 km by root/antiroot formations at

the crust/mantle interface. Seismic results indicate that the depth to the

35




crust/mantle interface is correlated with the topography, which may justify
the principle of an isostatic compensation at the. crust/mantle interface. The
Airy-Heiskanen model, however, assumes a strictly local compensation, which
more likely has a regional character due to the elasticity of earth malerials.
The Vening Meinesz model assumes such a regional compensation and is a

"smeared out" version of the Airy-Heiskanen model. Even though the Vening
Meinesz model is more realistic than the Airy-Heiskanen model, the
compensation mechanisms are much more complicated. Experiments by Lewis
and Dorman (1970) suggests that the compensation takes place at different
levels depending on the wavelengths of the topography.

It was decided to use an isostatic Airy-Heiskanen model assuming that a
gravity field similar to the gravity field from a Vening Meinesz regional model
is obtained by increasing the depth of compensation. An increase of the
depth of compensation corresponds to a smoothing of the crust/mantle
topography by an upward continuation. Then the depth to the crust/mantle
interface is given by

d” =D, - ad | (4.1}
where d is the bathymetric depth, D, is the depth of compensation, and
a=Ap,/b8p.. b8p, i8 density constant associasted with the topography and 4p. is
the crust/mantle density contrast. As densities of ocean water, crust, and
mantle values of 1.03 g/cm?, 2.67 g/cm?®, and 3.27 g/cm® were assumed. Then
4py=1.64 g/cm?, Ap.=0.60 g/cm?, and a=2.73.

The computation of geoid undulations associated with wavelengths shorter
than 2° was done using Fourier techniques in a flat earth approximation as
described in Forsberg (1985). The constant parts of the topography and the
compensating masses were omitted, since they are meaningleas in a flat earth

approximation (The geoid undulation becomes infinite). Then a geoid
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undulation outside the masses may be expressed by

Ny = T;;Tr. (4.2)

where 7y is the normal gravity, Ty is the potential from the terrain
d
- 1
T]’ - GApt I I r dZdA (4.3)
A do
and T¢ is the potential from the compensating masses
d’
- 1
Tc - GApt I ] r dZdA (4.4)
Ad,
G is gravitational constant, do is the mean depth in an area A, and
d'O:Dc—ddO'

A first-order expansion of l/r around d, in eq. (4.3)

1/r(z) = 1/ro-do/ro®(z-do), ro? = (Xq-—xp)? + (yg-¥p)? + do?

results in
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and for eq. (4.4)

d

Tc = Gbp, | [— (4 -d'o) - gty (d'~d' o)) da (4.6)

A

The expressions for the potential (eq. (4.5-4.6)) are now represenied as

two dimensional convolutions, which are suitable for the use of Fourier

techniques, since a convolution becomes a simple product in the frequency

domain. The seriea oxpansion of l1/r that was used in order to obtain this

representation, was carried out to firsi order. A zero-order expansion
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corresponds to a condensation of the masses on a layer at mean depth. In a
first-order expansion more of the geometry of the topography is taken into
account. General expresssions for calculation of potential anomalies Fourier
techniques may be found in Parker (1972).

The accuracy of the expressions for the potential depends on the
magnitude of high-order terms that are omitted. According to Parker (1972)
the magnitude of the high-order terms will be amalleat, when the reference
level is chosen 8o (d-do)pax = <(d-do)min. Assuming that this level is mean
level, this have been done in eq. (4.5) and eq. (4.6). Furthermore the
accuracy is highly depending on the roughness of the topography. Tests
carried out by Tziavos et al. ({1988) in an area with a very rough terrain show
that the first and the second term in the expansion are sufficient to compute
airborne gravity terrain effects with an accuracy of 0.25 mgal. Since geoid
undulations are smoother than gravity anomalies, eq. (4.5) and eq. (4.6) are
assumed to be sufficiently accurate.

Then geoid undulations, eq. (4.2), are calculated using eq. (4.5) and eq.

(4.6), and the relation: (d'-d’,) = -a(d-d,)

Np

G 1 - _ Yo _ _
7APt ] [to (d d°) 2!‘03 (d do}a] dA
A

- d’
s Lo [ (2 (ado) - ()7 g5 (ado)?)
A

"

o | ([ - Fcedo) - 5 (S35 + o« £55) (a-da)?]
A

(4.7)

The integration in eq. (4.7) are in the form of two convolutions involving
(d~do) and (d-do)?. These convolutions may be performed most efficienily by

Fourier transforming complex data:
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[(d-do) + 1(d-do)?] (4.8)

and a complex kernel:

[ - 24 - i (fas o « Sad)
From the computed spectra the spectra of each component may be isolated
through the conjugate symmetries of the Fourier transform. The kernel was
set to zero at distances larger than 2°, so only inner zone effects were
computed. If a border zone larger than 2° is used, problems with
non-periodic wavelengths are avoided and windowing are not needed. A
maximal distance of 2° was assumed to be sufficient, since only wavelengths
shorter than 2° were of interest. From the Fourier transforms of the
topography and the kernel, the Fourier transform of the geoid undulations is
obtained by a multiplication.

In order to obtain geoid undulations associated with wavelengths shorter
than 2°, a high-pass filtering was needed. This was dqne in the frequency
domain before the inverse PFourier transformation. As high-pass filter, S(v), a
step function, S, (w), was used, which has been smoothed by a Hanning taper

W(s) in order to take the frequency dispersion into account (Mesko, 1984).

That is
- 0 for : 0(6’0
Solw) = {1 _otherwise
and
i
Wee) = {t’ cos? [321 :_.-.;) for lwl < Aw
0 otherwise
then

S(w) = l So(w’) W(e -w) de’
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for wé(wo—Aw)

[1 ¥ ::.u ] * %,‘. sin ["’0';%“] for (wo—8w)<wl(wot+dw)

~ N- O

otherwise (4.10)

where o is the frequency, 4w is the frequency spacing, and w, is the cut-off
frequency. The cut-off frequency is 0.5 cycle/degree, which roughly
corresponds to a harmonic degree of 180.

Then residual ¢eoid undulations, AN;, from the isostatic earth model were
obtained using an inverse Fourier transform of the Fourier transform of the
geoid undulations multiplied by the high-pass filter, eq. (4.10).

Residual geoid undulations were computed in §° x 5° "SYNBAPS" mean
ocean depths was used. This was done using two compensation depths:
D¢=-50 km and D =-70 km. If the true compensation depth is assumed to be
30 km, this corresponds to a smoothing of the crust/mantle topography by
upward continuations of 20 km and 40 km re-Apectively. At the locations of
the altimeter data the residual geoid undulations were found by bilinear
interpolation in the grids.

4.2 Residual Terrain Reduction of the Altimeter Data and the Local Empirical
Covariance Functions.

The residual terrain effecis were compared with the high-pass filtered
altimetry by evaluating RMS values and power spectira of the quantities.
Furthermore correlation coefficients between the two quantities were
calculated. The reduction of the altimetry was evaluated in a similar way.
Finally local empirical covariance functions were estimated from the terrain
reduced altimeter data.

Correlation coefficients between the terrain reduced altimetry and the
bathymetric geoid may be used in an evalualion of the earth model. They

cannot tell if a model is correct, but they can tell if a model can be better. A
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zero correlation is obtained, when that part of the observations that are
corrvelated with the terrain effect, are removed completely. If the correlation
coefficient is different from zero, the terrain model may be used more
efficiently. A correlation coefficient different from zero may occur if wrong
density contrasts are used. Then either too less or too much are removed
from the observations, which result in either a positive or a negative
correlation coefficient. The use of a wrong compensation depth may have the
same effect, since the strength of the signal from the compensating masses
hereby changes.

The computed RMS wvalues of the residual bethymetric geoid undulations
are generally smaller than the RMS values of the altimetry (see Table 4).
Furthermore the values associated with a compensation depth of 50 km are
smaller than with a compensation depth of 70 km. The computed correlation
coefficients between the altimetry and the bathymetric geoid (Table 5) show
that the correlations are largest in Area 3, where the gravity field is rough,
and smallest in Area 2, where the gravity field is smooth. A reason for
decreasing correlations may be that both the altimetry and the "SYNBAPS"
bathymetry contain errors. In smooth areas those errors may dominate the
true signals, which results in very small correlation coefficients. Furthermore
the isostatic earth models are highly idealized and many geological structures

are not taken into account.

Area ANy Ah Ah--AN,

A B A B
1 0.33 m 0.37 m 0.53 m 0.41 m 0.41 m
2 0.07 - 0.08 - 0.45 - 0.45 - 0.45 -
3 0.86 ~ 0.96 - 1.12 - 0.42 - 0.41 -

Table 4. RMS values of residual bathymetric geoid undulations, AN;, with
compensation depths: D.=-50 km (A) and D.=-70 km (B), high-pass filtered
altimeter data, Ah, and residual terrain reduced altimeter data in Area 1,
Area 2, and Area 3.
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Area (Ah, AN;) (Ah--ANy, AN;)
A A B
l 0.65 0.05 -0.07
2 0.15 0.00 -0.05
3 0.94 0.45 0.21

Table 5. Correlation coefficients between altimetry, Ah, and bathymetric
geoid, AN, with D.=-50 km (A), and between terrain reduced altimetry and
bathymetric geoid with D_.=-70 km (B) in Area 1, Area 2, and Area 3.

The RMS values of the residual terrain reduced altimetry are
approximately the same, and only a slight change in Area 3 is found, when the
depth of compensation is changed from 50 km to 70 km. In Area 1 and Area 2
there are practically no correlation between the terrain reduced altimetiry and
the bathymetric geoid associated with both compensation depths. The
altimetry have therefore been reduced as well as possible with both earth
models. In Area 3 the terrain reduced altimetry is still correlated with the
bathymetric geoid, when a compensation depth of 50 km is used. This
correlation is decreased, when a compensation depth of 70 km is used. Since
the effects from the masses above sea level of Bermuda are not taken into
account when "SYNBAPS" data are used, no further attempts to adjust the
earth model in Area 3 were made.

The local empirical covariance functions and power specira were estimated
from the high-pass filtered terrain reduced altimeter data, where the residual
terrain effects obtained with a compensation depth of 50 km were used in Area
1 and Area 2, and the residual terrain effects obtained with a compensation
depth of 70 km were used in Area 3. These results together with the results
nbtained before the terrain effects were subtracted, are shown in Figure 7-9.

The power spectra show that the reductions are larger than 50% (=3 dB)
at frequencies between 0.75 and 1.75 cycles/degree in Area 1, at 0.75

cycles/degree in Area 2, and between 0.50 and 1.75 cycles/degree in Area 3
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At higher frequencies the power of the terrain effects is very amall compared
with the power of the altimetry.

The estimated terrain reduced geoid height variances in the three local
areas were 0.096 m?, 0.108 m2, and 0.147 m? respectively. The largest
reduction took place in Area 3 where the geoid height variance decreased 88%
(=9.21 dB), when the terrain effects were subtracted. In Area 1 and Area 2
the reduction were 55% (=3.47 dB) and 4% (=0.18 dB) respectively.

The effects of reducing the altimeter data with terrain effects computed
from the "SYNBAPS” bathymetry are that the geoid height variances decreased
from 0.11-1.22 m? to 0.10-0.15 m2. The magnitude of the unmodelled parts of
the gravity field have hereby decreased and the differences between the
geoid height variances in the three local area have decreased remarkably.
This may be important in a determination of a covariance function model.

5. _ Determination of Covariance Function Models from Local Empirical Geoid
Height Covariance Functions

In least squares collocation a covariance function model that represents
the local empirical covariance function, is needed. It is therefore an important
step to determine such a model. In section 2.3 a method for adjusting a
Tscherning/Rapp model to empirical covariance values is described. In this
chapter the use of this method is described, when the estimated geoid height
autocovariance values are used.

A determination of a covariance function model from a local empirical
geoid height autocovariance function is known to provide a result, where the
depth to the Bjerhummar sphere is not well determined (Knudsen, 1987). This
has been verified by adjusting a model to the empirical covariance functiona
estimated from the altimeter data in Area 1, Area 2, and Area 3. Since

remaining long wavelength parts of the gravity field have been removed, the
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scale factor, a, was fixed to be zero. The results showed that the standard
deviations of the estimated depths to the Bjerhammar spheres were about the
same magnitude as the parameters themselves.

Since the depth to the Bjerhammar sphere is not well determined from
geoid height covariance values only, it was decided to fix this parameter to
different depths, and adjust the factor, A, only. Then gravity anomaly
variances were calculated from the adjusted covariance function models. The
results from the adjustments where covariance values estimated from the
altimeter data, before the residual terrain reduction, in Area 1, Area 2, and

Area 3 are shown in Table 6-8 respectively.

R-Rp A Q Crot Cag.Ag
0.5 km | 1195-103(m/s)* 1.02 0.168 m? 857 mgal?
1.0 - 1249 - 1.04 0.166 - 693 -
2.0 - 1359 ~ 1.07 0.163 - 545 -
4.0 - 1600 - 1.13 0.159 - a16 -
8.0 - 2165 - 1.23 0.152 - 310 -

Table 6. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 1 before terrain reduction.

R-Ry A 9 Ceot CAg.Ag
0.5 km | 610-10°(m/s)* 1.11 0.086 m? 437 mgal?
1.0 - 639 - 1.12 0.085 - 354 -
2.0 - 698 - 1.14 0.084 - 280 -
3.0 - 827 - 1.17 0.082 - 215 -
8.0 - | 1140 - 1,22 0.079 - 162

Table 7. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 2 before terrain reduction.

0.5 km 8530-103(m/s)* 0.67 1.197 m? 6111 mgul?
1.0 - 8727 - 0.68 1.162 - 4842 -
2.0 - 9506 - 0.71 1.143 - 3810 -
4.0 - 11152 - 0.77 1.108 - 2902 -
8.0 - 13463 - 0.89 1.018 - 2078 -~

Table 8. Resuits from the adjustment of a covariance function model to
the empirical covariance function in Area 3 before terrain reduction.

The results from the adjustments of covariance function models to the
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empirical covariance values (Table 6-8) show that the effects of a dramatic
change of the depth to the Bjerhammar sphere from 0.5 km to 8.0 km are
quite small, when the Q values and the model geoid height variances are
considered. The effect on the model graviiy anomaly variance, however, is
large. This means that determinations of the depth to the Bjerhammar sphere
may be done, if estimated gravity anomaly variances are available. Without
other information than the geoid height covariance values the determination of
a covariance function model is difficuit. Furthermore the gravity fields in the
three local areas have different characteristics, so general assumption abouth
the gravity fields cannot easily be made.

Then covariance function models were adjusted to fit the empirical
covariance values estimated from the residual terrain reduced altimeter data.
The potential degree variances associated with the terrain reduced gravity
field were also assumed to tend to zero somewhat faster than i~3, so the
Tscherning/Rapp model could be used. It is of course a problem to decide, if
it is reasonable to model the degree variances associated with the terrain
reduced gravity field using a Tacherning/Rapp model. The results obtained
by Forsberg (1986) in the Nordic countries, where accurate terrain models are
available, justify the use of a Tscherning/Rapp model. If inaccurate terrain
models are used, the gravity field will only be reduced at wavelengths longer
than the resolution of the terrain models, and the shorter wavelengihs will
remain unreduced. Then the covariance function model should model the
degree variances in a similar way, as if a spherical harmonic expansion had
been subtracted. This may be done by using a sort of error degree variances
up to a harmonic degree corresponding to the resolution of the terrain model,
and a Tacherning/Rapp model above this harmonic degree.

The results from the adjustments of covariance functions associated with
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residual terrain reduced gravity fields (Table 9-11) show the same problems as

described above. The importance of these results are that the differences
between the three local areas have become smaller. The results obtained in
Area | are very similar to the results obtained in Area 2. In Area 3 the

respective variances are about 57% larger than the variances calculated in
Area 2. This is probably due to an incomplete modelling of the terrain above
sea level,

The major differences between the characteristics of the gravity fields in
the three local areas have been removed, which should make it easier to use
general assumptions about the gravity field, when covariance function modeis
are determined. Furthermore the magnitude of the unknown parts of the
gravity field have decreased, which decreases the effects of using a wrong
covariance function model. In Area 3 a change of depth to the Bjerhammar
sphere from 2.0 km to 4.0 km results in a change in the gravity anomaly
variance corresponding to 7.9 m?al (RMS) without terrain correction and 2.5

mgal (RMS) with terrain correction.

R-Rp A Q Crot Cag.ag |
0.5 km 566 10> (m/s)* 0.95 0.07Y9 m? 406 mgal?
1.0 - 592 - 0.96 0.079 - 329 -
2.0 - 646 - 0.99 0.078 - 259 -
4.0 - 763 - 1.04 0.076 - 199 -
8.0 - 1048 - 1.16 0.073 - 149 -

Table 9. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 1 after terrain reduction.

R-Rg A Q C{' L Cug Ag
0.5 km 560-10°(m/s)* 1.19 0.079 m? 401 mgal?
1.0 - 586 - 1.19 0.078 - 325 -
2.0 - 639 - 1.21 0.077 - 256 -
4.0 - 755 - 1.24 0.075 - 196 -
8.0 - 1039 - 1.29 0.072 - 148 -

Table 10. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 2 after terrain reduction.
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R-Rg A Q Cr ot Cag.a¢
0.5 km | 881-10°(m/s)* 0.79 0.124 m? 632 mgal?
1.0 - 922 - 0.8l 0.123 - 512 -
2.0 - |1007 - 0.84 0.121 - 404 -
4.0 - {1192 - 0.89 0.119 - 310 -
8.0 - |1643 - 0.97 0.115 - 234 -

Table 11. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 3 after terrain reduction.

Assuming that the decay of the potential degree variances associated with
the terrain reduced gravity field is -3.6 corresponds to a covariance function
model with R-Rg=3.0 km. In Area 1 and Area 2 a model with A=711:'10%(m/s)*
having a gravity anomaly variance of (15 mgal)? may be used. In Area 3 the
factor A and the variance may be multiplied by 1.57.

In this chapter covariance function models have been adjusted to the local
empirical covariance values estimated in the three local areas from altimeter
data. The results show that the characteristics of the terrain reduced gravity
fields, as observed by the altimeter data, are quite similar. The determination
of covariance function models, however, still need more information about the
gravity fielde than provided by the altimeter data, or generalizations about
the gravity fields. In the three local areas covariance function models were
determined using the assumption that the decay of the potential degree
variances associated with the terrain reduced gravity field is -3.6.

6. Summary and Conclusions

In this report, techniques for the estimation of local empirical covariance
functions are described. The importance of removing those parts of gravity
field that are associated with wavelengths longer than the extent of the local
areas, is explained and a method for doing it is given. Furthermore a
technique for the computation of residual geoid heights from an

Airy-Heiskanen isostatic earth model is described. Then the use of satellite




altimeter data for the estimation of gravity field related quantities in local
areas is evaluated and the variability of the gravity field associated with
harmonic degree greater than 180 is studied in three 2°x2° areas by
comparing local empirical covariance functions computed from altimeter data
before and after a residual terrain reduction. Finally covariance function
models are adjusted to fit the local empirical covariance functions.

From the merged SEASAT/GEOS-3 altimeier data relative to 0OSUS81, geoid
height observations associated with harmonic degrees greater than 180 were
obtained in three steps. In the first step the altimeter data were correcled
for time varying components by a crossover adjustment. In the second step
remaining long wavelength parts due to errors in OSU81, sea surface
topography, and correlated parts of remaining orbit errors were removed by a
highpass filtering. In the last step the noise terms associaled with the
altimeter data were modified in order to obtain noise terms associated with the
altimetler data as geoid height observations. The results from the crossover
adjustment show that uncorrelated parts of the time varying components in
general were well removed. Some short wavelength varialions due by changes
in the Gulf Stream, however, appeared not to be well modelled in the
adjustments. A reason for that may be that a (too) simple covariance function
associated with the time varying components was used. The covariance
function was originally designed to model sea surface variations having
wavelengths of about 1000 km (Knudsen, 1987a), and the variations due to
changes in the Gulf Stream have a characteristic wavelength of 550 km and an
amplitude up to about 25 cm (Menard, 1983). A more detailed study of the
non-gravimetric signals are needed, 80 covariance functions describing the
correlations in space and time between those signals can be determined.

The effects of wavelengths longer than the extent of the local area on an
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estimation of a local empirical covariance function were evaluated by comparing
empirical covariance functions and power specira estimated before and after
the highpass filtering. The effects were found to be considerable. Especially
the results obtained in the "smooth" Area 2 show the importance of removing
those long wavelength parts. Here the magnitude of the long wavelength
parts is more than twice as big as the magnitude of the highpass filtered
geoid heights. In the estimation of the long wavelength parts a smoothing of
the observations was done using a rectangular sinc filter. A rectangular sinc
function is a better choice than a box-car function, but it is not isotropic. [t
is felt that the relations between the spherical and the planar representiation
have to be studied more carefully, so more optimal low-pass filters can be
derived.

Residual terrain effects were calculated from "SYNBAPS" 5°x5° mean
bathymetry using Fourier techniques. As earth model an isostatic
Airy-Heiskanen model was used, but the depth of compensation was increased
in order to simulate a regional Vening Meinesz model. Residual terrain
reduced altimeter data were computed using compensation depths of 50 km and
70 km respectively. The results show that the reductions of the altimeter
data practically are unaffected by the change in compensation depth, when
wavelengths shorter than 2° are considered. The important thing is that the
RMS values of the altimetry have decreased to about the same level. In the
following tests a compensation depth of 50 km was used in Area 1 and Area 2,
ans 70 km was used in Area 3, since the smallest correlations between the
terrain effects and the terrain reduced altimetry were obtained using Lhese
compensation depths.

The results from the comparisons of the local empirical covariance

functions and the power apectra calculated from the highpass filtered altimeter

52




data before and after the residual terrain effects were subtracted, show that
the variances are reduced by about 3 dB, 0 dB, and 9 dB in three local areas.
As expected the reductions were found to depend on the roughness of the
gravity fields, and the estimated geoid height variances decreased to values
between 0.10 m? and 0.15 m?, when the terrain effects were removed. The
remaining parts of the gravity fields, having a RMS value of about 0.35 m, are
not modelled by the Airy-Heiskanen isostatic earth models that were used.
The power spectra indicate that only a little reduction took place at
frequencies larger than 1.75 cycles/degree. The spectra of the altimetry are
influenced by noise, but the spectra of the bathymetric geoids do decrease
rapidlly above this frequency. This suggests that the resolution of the
"SYNBAPS" bathymetry is about 1.75 cycles/degree (a wavelength of 63 km)
and poorer than the resolution of the altimetry, which in chapter 3 was
determined to be about 3 cycles/degree (a wavelength of 37 km). Therefore
the modelling of the high frequency parts may be improved by using a more
accurate bathymetry, but changes in the actual density distribution may also
cause high frequency changes in the gravity field.

The results from the adjustments of covariance function models show that
more information about the gravity fields than provided by geoid height
observations, or strong generalizations are needed, when covariance function
models are determined. A removal of the terrain effects, however, removes the
major differences between the gravity fields, which should make it easier to
use general assumptions about the residual gravity field and, perhaps more
important, decrease the effects of using a wrong covariance function model.
Therefore the use of terrain effects in gravity field modelling have reduced
some of the problems in the determination of a covariance function model. The

results, however, may indicate that the accuracy of the terrain model is too
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poor to reduce the high frequency parts of the gravity field, which is not
taken into account in the covariance function modelling. This explains why
the model variances are smaller than the empirical variances. A study of the
use of other covariance function models may result in a better description of

degree variances associated with the terrain reduced gravity field.
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